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Non-canonical Poisson bracket for nonlinear elasticity with 
extensions to viscoelasticity 
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Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA 

Received 17 September 1990, i n  final form 16 December 1990 

Abstract. In this paper, we introduce B generalized bracket which is capable of generating 
the dynamical equations governing the Row of both elastic and viscoelastic media. This 
generalized bracket is divided into two parts: a non-canonicd Poisson bracket and a new 
dissipation bracket. The non-canonical Poisson bracket is the Eulerian equivalent of the 
canonical Lagrangian Poisson bracket corresponding to an ideal (non-dissipative) con- 

Eulerian equations of motion i n  nodinear elasticity valid for large deformations. I t  is 
shown that the proposed non-canonical bracket naturally leads to a materially objective 
relation involving the upper-convected time derivative of a strain tensor, as suggested by 
Oldrayd 40 years ago. The dissipation bracket for linear irreversible thermodynamics is 
next proposed in a general, phenomenological circumstance, so that the dissipation proces- 
ses occurring in real systems (viscous and relaxation phenomena) can be incorporated into 
the Hamiltonian formalism. This bracket diverges from previously proposed dissipation 
brackets i n  that it uses the same generating functional (i.e. the Hamiltonian) as the Poisson 
bracket. rather than an entropy functional or a dissipative potential. It is shown that, in 
combination with the choice of a n  appropriate Hamiltonian functional, the generalized 
bracket proposed here can generate the governing equations for many viscoelastic media, 
including the Voigt solid and the Maxwell viscoelastic fluid. 

fi" ....- I t  :" .4*.;.,-,4 <"-" "̂ ..,:...."_ -llili^ --A:..- ""A ,%.-.. :. i" .. *^ ..L,":" #I.* 
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1. Introduction 

The study of Hamiltonian mechanics has recently intensified due to increasing recogni- 
tion of the wide applicability of these techniques. The Poisson bracket formulation of 
Hamiltonian dynamics, originally developed for optical and discrete particle systems 

mechanics and quantum electrodynamics (Lanczos 1972). These ideas sparked little 
interest outside of the above-mentioned areas due tn their apparent limitation, i.e. the 
description of non-dissipative, discrete systems. Renewed interest in the Poisson bracket 
formalism was generated when the ideas of Hamiltonian mechanics came to be applied 
to continuum systems, probably emanating from Arnold (1965, 1966, 1978). Only 
during the last three decades have researchers actively sought to extend these ideas to 
other, more complex, applications, such as continuum hydrodynamics, plasmas, etc. 
In particular, in the past decade much work has oriented towards the first non-canonical 
Poisson brackets develop-d for ideal fluids (Morrison and Greene 1980), Maxwell- 
Vlasov equations (Marsden and Weinstein 19821, etc, and their first applications in 
global stability. analyses (Holm et a /  1985). 
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during the previous century; found its major application in the development ofqu;un!um 
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Moreover, there still exists a large body (indeed, the majority) of applications 
which cannot take advantage of this more general formulation of the dynamical 
equations in continuum mechanics using non-canonical Poisson brackets due to the 
presence of irreversible (dissipative) phenomena. Before the last few decades, an 
adequate theory of irreversible thermodynamics was not available and thus no one 
knew how to deal with the radical deviations from ideal system behaviour observed 
in dissipative systems. With the growth of the knowledge base concerning irreversible 
mermuuynainics, ii is iiius oniy naiurai ihai schoiars shouid return to kiamiitonian 
mechanics as a technique for both deriving useful dynamical equations as well as 
combining conservative and irreversible theories into a unified whole. Only a limited 
number of attempts to extend Hamiltonian methods to dissipative media have been 
reported in the literature (Kaufman 1984, Grmela 1984, 1985. 1989). none of which 
were entirely satisfactory. 

what we call a generalized bracket (for lack of  a better name), which can be used to 
express the more complex phenomena in Hamiltonian form; specifically, we wish to 
look at the cases of a nonlinear elastic medium and of a viscoelastic fluid. This 
generalized bracket is composed of two parts: a conservation part and an irreversible 
part. The conservative part is the well known Poisson bracket of traditional Hamiltonian 

To be sure, the idea of a dissipation bracket is not entirely new, seeming to emanate 
from Kaufman (1984) and Grmela (1984). Thus we divide this paper into two parts, 
each dealing with one aspect of the generalized bracket. 

In the study of hydrodynamics and elasticity, two different approaches have come 
down to us from the elders: the Lagrangian or material description and the Eulerian 

of a particular fluid particle of the continuum, of constant mass, in space and time; 
while the spatial approach describes the fluid properties at a specific location in space 
as functions of time. Although most of the recent work in Hamiltonian mechanics has 
been done in the material description, the complex systems are most aptly handled in 
the spatial description, for which we may use the machinery of irreversible thermody- 
namics to assist in the interpretation of dissipative phenomena. 

In section 2, we start with the canonical, material Poisson bracket and derive from 
it  explicitly the equivalent spatial Poisson bracket for nonlinear elasticity by a straight- 
forward variable transformation. From this bracket, the ideal, spatial equations of 
motion are subsequently derived in their standard forms. In 1983, Holm and 
Kupershmidt used a Clebsch representation to arrive at an Eulerian Poisson bracket 
for elasticity (p 361); however, this bracket is not well suited for general rheological 
applications. The reasons for this are that their bracket is in terms of the deformation 
gradient tensor field, F, and that the resulting evolution equation for the structure does 
not meet the invariance criterion originally proposed by Oldroyd (1950). Oldroyd 
showed how the substantial time derivative changes when one moves from a convected 
coordinate to a fixed coordinate in order to maintain the proper frame-invariance 
relation. 

Other researchers recently have attacked the problem of determining the non- 
canonical Poisson bracket for elasticity, most notably Marsden et a1 (1984) and Simo 
et al (1989). These derivations, being performed in the most generally applicable form 
(through differential geometry), are very difficult to follow. Therefore, we treat here a 
special case, that of the fixed-boundary viscoelastic fluid, where the derivation of the 

.L .--.. >~ . . ~  

T.. .L:" -^-^- ... ̂ ... :^L ." ̂-I> 1- .I.:" ~-̂...:.."L...4.. ^'-I ._ ,"A--  L.. 
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mechanics described .#hi!e the irreversib!. is ca!!ed a di.sipatiox bracket, 

or S p f i p !  descripfion: The materia! description concerns h e ! f  with specifying the path 
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appropriate bracket may be accomplished through a formulation which better conforms 
to traditional techniques. This derivation is detailed in section 2 so that the reader 
may follow it without having to resort to any number of past articles to glean the 
necessary information. The reader is referred to the two citations above if interested 
in the more general derivation, which is in fact necessary if one wishes to study the 
more complex problems of rods, shells, etc. 

After deriving the spatial forms of the Poisson brackets for the conservative part 
of the generalized bracket, we combine them in section 3 with the spatial dissipation 
bracket. In order to arrive at the proper, general dissipation bracket, we use as a guide 
the theory of linear (close to equilibrium) irreversible thermodynamics. The form for 
this dissipation bracket was recently introduced by Edwards and Beris (1990) and used 
to derive the simple hydrodynamic equations for both single-component and multicom- 
ponent fluid systems. The dissipation bracket which we propose differs from the type 

functional (i.e. the Hamiltonian) in both parts of the generalized bracket. This leads 
to a more aesthetically pleasing formulation since only one functional (the Hamiltonian) 
dictates the dynamics of both conservative and dissipative systems. Along the same 
lines, other researchers have previously reported work on dissipation brackets, most 
notably Grmela (1984, 1985, 1989), and we shall cite these as the occasion warrants. 

for a viscoelastic fluid in the spatial description, and showing two brief examples: the 
Voigt solid and the Maxwell viscoelastic fluid. 

of dissipation btdC& of Kaufmman (i984, p4;9j in we use i'ne same 

F,ca!!y, !he geneca!&j bracket, vJe conckdde 5; &ssipa!i;r~ eq-a!ions 

2. Non-canonical Poisson bracket for nonlinear elasticity 

In order to derive the equations of motion for an ideal elastic medium in the spatial 
representation via the Poisson bracket, it is first necessary to arm ourselves with a few 
definitions. These are necessary when dealing with continuous systems (instead of the 
discrete systems for which the Poisson bracket was originally introduced) in order to 
construct the resulting equations, as well as to illustrate the analogy with the system 
U1 "LIcLrlc parrrc1r;s. 

Let us define an arbitrary functional, F = F[a,  b, . . .I, where a, b, . . .E P ( P  being 
the operating space of the problem in consideration) are the dynamical variables of 
the system of interest, through the equation 

.r I: .̂._ Î  - - - : -I- .  

F [ a ,  b ,... 1- [ f ( a ,  b ,... )d3x. (2.1) 
,> - .' 

In this expression,f is a scalar function of the system variables with suitable continuity, 
is the domain of interest with boundary JO, represented by a spatial grid of points 

x, and d3x represents the appropriate volume element for the integration. In general, 
a, b, . , . depend on x and time, 1. The above expression is not the most general form 
for the functional F, but is adequate for our purpose here. 

With the above definition for F, we can ais0 define the Voiterrafuncfionai derivatives 
(for unconstrained systems) as 

... EP. SF J f  SF J f  
Sa aa Sb Jb 

_I- --- (2.2) 
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Although the variables are treated as scalars here, for simplicity, they can be tensors 
of arbitrary order, in general, in which case the derivatives are with respect to the 
components of the tensor. 

The situation is slightly more complex when one considers a functional of not only 
a, but V a ,  where V = alax, i.e. 

B J Edwards and A N Beris 

F [ a , V a ] =  f ( a , V a ) d ' x .  I,, 
In this case, taking the variation of F, SF, gives 

S F = [  an 
(gas+- a ( V a )  af  . S ( V a ) )  d'x 

whereupon switching the order of differentiation and integrating by parts the second 
term on the right-hand side yields 

(Remember, the variations are defined to vanish on the boundary.) Therefore, the 
Volterra derivative of the functional F with respect to a becomes 

E P  
SF Jf J f  = v . -  
Sa Ja a ( V a )  

(This definition can easily be extended in a straightforward fashion to incorporate the 
dependence of F on higher-order derivatives of a.) Thus we see the intimate connection 
between the above functional derivatives and the calculus of variations, i.e. the func- 
tional derivative SF/Sa is just a notation indicating the Euler-Lagrange equation 
resulting from the variation of the functional F with respect to the variable a. 

If a and b are functions of time, then we can write the total time derivative of F as 

d F  d 
-=- (lo f ( a ,  V a ,  b )  d'x) 
d t  d t  =I5l$ f ( a , V a ,  b )  d'x 

af  Ja 
aa at a ( V a )  at ab a t  

af a ( V a )  af Jb) =I (-- +-.- +-- d'x 

SFaa SFab 
Sa Jt Sb at 

= jn (- -+- -) d'x 

This expression is used throughout the paper. 
Now that we have the above definitions, we are able to derive the non-canonical, 

spatial version of the Poisson bracket directly from the material, canonical Poisson 
bracket, and subsequently the spatial equations of motion. We follow a similar pro- 
cedure to that proposed by Abarbanel et al (1988) based upon the more general 
formalism of Marsden er a1 (1984), although we have introduced some minor cosmetic 
changes: most notably that we are here treating the entropy density as the dynamical 
variable rather than the entropy per mass. This simplifies the final bracket expression 
and allows a straightforward extension to dissipative phenomena (see section 3). 
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As alluded to in the introduction, in the material description we can specify the 
equations of motion for a certain fluid particle of which we are following along its 
trajectory. This fluid particle of the continuous medium is labelled by a position 
(reference coordinate) vector at time r = 0, r e  B3, with a coordinate function Y(r ,  1 )  E 

3’ specifying the path of this particle in space and time. (For the sake of simplicity, 
we require both coordinates r and Y to be rectangular Cartesian.) At time t = 0, the 
fluid occupies a region, il, with boundary d i l ,  and the initial condition on the fluid 
particle under consideration is obviously Y ( r , O ) =  r. At the later time r, the fluid 
occupies the region il’, with boundary an’, and the fluid particle is at position Y(r ,  t ) .  

For simplicity in the following analysis, we consider the boundary of the fluid to 
be fixed, i.e. d o ’ =  Jfl for all times. In a subsequent work, we generalize this procedure 
for the free-boundary elastic medium, with applications to dissipative systems. In this 
section, we treat the system in terms of il and (it being understood that the two 
quantities are identical) so that most of the mathematics will carry over directly to the 
free-boundary problem, as represented by Abarbanel et a/ (1988) for ideal hydrody- 
namics of simple fluids. This simplification allows us to study the problem using a 
simple formalism similar to that of Abarbanel et a/  (1988) rather than the fully general 
methodology of Marsden er al (1984). In the case of a fixed boundary, all of the 
necessary boundary conditions are easily specified. 

Associated with this fluid particle is a volume element at f = 0, d3r = dr,  dr, dr,, 
where the vector r has components r , ,  r, and r3. Though the mass of the fluid particle 
must remain constant, its volume element is allowed to vary with time and space due 
to the compressible nature of the fluid. The volume element of the particle at any time 
f can be related to the volume element at t = O  through the Euler relation (Truesdell 
1966, p l 8 ) ,  

d 3 Y = J d 3 r  ( 2 . 8 ~ )  

where J is the Jacobian which defines the mapping of the fluid particle from r at time 
r = O  to Y ( r ,  r )  at arbitrary time t .  This Jacobian is given by the determinant of the 
deformation gradient tensor field, F, which, as  the name suggests, measures the relative 
deformation undergone by the fluid element compared to the reference configuration: 

(2.8b) 

Given the definitions (2.86), it is a simple task to prove the Boussinesq identity (see, 
for example, Herivel 1955, p 347), which states that 

JJ _ _  JrP 
JF,, ay. 

- J- 

as well as the identities 

(2.10) 

The distribution of the system mass at f = 0 can be described by a density function, 
po=po(r) .  Since the mass of the fluid particle is conserved, the mass density at any 
Y ( r ,  t ) ,  denoted p (  Y, r ) ,  must satisfy the conservation equation 

p (  Y, r )  d’ Y = po( r )  d’r. (2.11) 
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Thus the density can be written in terms of the Jacobian of equation ( 2 . 8 ~ )  as 
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(2.12) 

Hence we see that p(Y, 1 )  depends on Y through the Jacobian or, more specifically, 
through the deformation of Y relative to the reference configuration, F. Essentially, 
the functions p , ( r )  and p( Y, I) E a*, where Bet is the space of real, positive numbers. 

In complex media, such as elastic solids, polymeric liquids and liquid crystals, one 
needs to describe not only the simple hydrodynamics of the fluid, but the internal 
structure as well. This structure evolves according to the kinematic history, and 
influences the internal stress of the material in addition to the overall hydrodynamic 
behaviour. Here we use a second-order deformation tensor to describe the internal 
structure of the elastic medium, which is a properly invariant tensor field, c( Y, t), In 

for instance, we could associate c with a weighted average over the usual orientational 
distribution function of kinetic theory (Bird et a/ 1987, p63). Other interpretations 
also spring to mind. Here, we define cnP = F,,F,, and wish to obtain the equations of 
motion of the ideal elastic medium in terms of this quantity. 

The equations of motion in the material description for the fluid particle in 
ccnsiderz!icn CPE be viewed P S  ?rising from a cont icxm PO~SSOE brzrket ana!ogo~s 
to the Poisson bracket of discrete particle systems. In terms of the above functional 
derivatives, this bracket takes the form (Goldstein 1980, p 567) 

^^x^_^I .L -.-.. "--c-,> ̂ I" r\ ..-..I.- I-..I- L:*-" -C.L..--A:. .- .  gcrrr;,'lr, L U G  L C l l J U L  11G1U I.( I ,  L ,  call U G  'luy auL"'lLy IIIGLIJUIG U, L U G  I I I G U I U I I I  5 SL1"CL"1C, 

{ F , G } , =  I ( S F  SG SF SG)d,r 
n SY sn sn SY 

(2.13) 

where the dynamical variables of the problem are the material coordinate, U, and the 
conjugate momentum of Y, n, which is defined as n(r ,  1 )  = p o ( r ) J Y ( r ,  t ) / S t  (Goldstein 
1980, p 563). Note that the expression (2.13) is only correct for the simplified system 
with which we are dealing; i.e. a fixed-boundary system. F and G are arbitrary 
functionals of these two dynamical variables. The operating space, P, for this problem 
is then obviously 

P E  
v ' ~ n ~ - - r i n p o  

in(r, 1 )  E 9 3  n(r ,O) = p d r ) J y ( r , o ) / J t  in Cl. 
(2.14) 

The Hamiltonian (total energy) of this system, which arises through the Legendre 
transformation of the corresponding Lagrangian (Goldstein 1980, p 563), is written as 

CY(;, :: G B' - \ . ,"I  - 

or, alternatively, as 
f 

H =  (e,+e,+u)d'r Jfl (2.16) 

where e; is an external field potential and 6 is the internal energy per unit mass, 
the latter being a functional of the mass density, p, the specific entropy 3, and ihe 
structural parameter, c. (Note that S, the entropy per unit mass, is constant 
for the fluid particle, i.e. S = S , ( r ) ,  adiabatic flow.) In equation (2.16), ek, ep and 
U are the kinetic, potential and internal energy densities (per unit reference volume), 
respectively. 
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The equations of motion now arise through the dynamical equation for arbitrary F, 

(2.17) 

where we compare the Poisson bracket of (2.13) with the differentiation by parts of 
dFldr :  

d F  [ ( S F  dY S F  J I I \  _- -.-+-.- ,+, 
d t - J , \ S Y  J t  ' S I I  a t / - "  

Thus we have 

2nd 

(2.!8) 

(2.196) 

(Remember that fi depends on p and c, which depend in turn on the gradient of Y, F. 
Thus we need to invoke equation (2.6). Also note that g, for a specific r, is independent 
of Y.) 

Although equations (2.19) represent the equations of motion for the fluid particle, 
equation (2.19b) is not yet in a form which is immediately recognizable to students 
of hydrodynamics; however, using the standard thermodynamic definition of the 
pressure, 

(2.20) 

and the identities (2.9) and (2.10), equation (2.19b) can be rewritten as (see Seliger 
and Whitham (1968, p 4) for the simple fluid hydrodynamic case) 

(2.21) 

Thus we have the usual equations of motion for an ideal fluid in the material description, 
with the third term on the right-hand side representing the elastic stress tensor. 

Now that we have derived the dynamical equations in the material description, let 
us see how these quantities can be transformed into their spatial counterparts. In the 
spatial description, we consider a fixed-coordinate point in space (again assumed to 
be rectangular Cartesian convenience), x, for which the (constant) volume element is 
given by d'x. At this point, we sit and observe the properties of the fluid passing by 
us. For the transformation from material to spatial coordinates, we need to identify 
the fixed point x with the position function Y(r, t), which coincide at the instant 1. 
At this time, the fluid occupies the region with boundary JW. This procedure 
specifies a new function for all later times i, R(x,  i), which maps Y back to the fixed 
position x: 

x =  Y [ R ( x ,  i), i ] .  (2.22) 

Thus this function R(x,  i) serves as a material label for the fluid particle which was 
at position x at time ( which is a determined function of the spatial field. Of course, 
R = r at time 1. 
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In the spatial description, we can now determine the dynamical variables for a 
nonlinear elastic medium as functions of x and 1, in the domain a’, with fixed boundary 
an‘. Here the variables are the mass density, p(x ,  I ) ,  the momentum density, M ( x ,  t )  = 
p ( x ,  f ) y ( x ,  I )  (where u(x, f )  is the velocity vector field), the entropy density, s(x, t) = 
p(x ,  t)S’(x, I), and the structure density, C(x, 1)  = p(x ,  f ) c (x ,  f ) .  Thus the operating 
space, P, for the spatial description is 

P ( x , r ) E s +  
M ( X ,  f ) E  % 3  

C(X, I ) €  se’x % 3 r  

s(x, 1 )  E 92 

P ( X ,  0) = pdx) in 0 
M i x ,  0) = M , ( x )  in CL, and Y . M = 0 on an’ 
(appropriate boundary and initial conditions) 
s(x, 0) = so(x) in 

I... . - 

(2.23) 

where Y. M = 0 ( Y being the outwardly directed unit vector normal to an’) ensures 
that the fluid does not penetrate the (fixed, in this case) boundary. Thus we see that 
inc spc~iiicarion of  a domain, G’, with both iniiiai and boundary conditions, is impiicit 
to the spatial description, i.e. in a description based on x. The dynamical variables can 
now be written solely in tenns of their material counterparts through the definition 

A,.. -~...:c.... 

(2.24) 

where a and b are arbitrary vectors and g Is an arbitrary function with suitable 
continuity. The mass density can he expressed as 

p(x ,  T ) = d Y [ R ( x ,  TI, TI ,  T )  
or given that at time T =  f :  

n (r  t ) = n f V ( .  r )  t l  ,.\.-,., ,- \- \- ,- , ,- ,  

or via (2.24) 

p ( x , f ) =  p ( Y ( r , t ) , f ) S ’ [ Y ( r , f ) - x ] d ’ Y  
I n ,  

= I ~ ~ ( r ) 8 ~ [ y ( r ,  r ) -xjd3r  
J n  

where we have made use of equation (2.11). Similarly, 

~ ( x ,  t ) = p ( Y ( r ,  O. t)*(r,  

- - r po(‘)L(r, !)&’[Y(,, !)-.rjd’! 
J* 

=jntI (r ,  t )S’ [Y(r ,  t)-x]d’r 

s(x, I )  = 1,. so( *)a3[  Y (  r, 1) - x j  d’r 
. I .  

and 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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where we have multiplied both sides of equation (2.11) by s: 
s(Y,f)d3Y=so(r)d3r .  (2.29) 

Thus the spatial variables p, M, s, and C are now expressed solely in terms of the 
material variables and it is apparent why we have chosen these as the natural variables 
(i.e. the density variables are necessary for the transformation from material to spatial 
coordinates). Note that the entropy density cannot be considered constant in either a 
mzteri.! OT fixed-coordinzte svctem 

Now we can follow the procedure of Marsden ef a1 (1984), to derive the non- 
canonical, spatial equivalent of the Poisson bracket. Therefore, we need to define the 
functional derivatives of equation (2.13) through the chain rule of differentiation. For 
an arbitrary functional, F [ p ( x ,  1 ) .  M(x,  f ) ,  s(x, f ) ,  C(x, f)], following equation (2.71, 
these are \ 

i I.-.._' 

bF bp(x,1)  SF S M p ( X , f )  

S d x ,  t )  SYAr,  0 SMB(X, 1 )  SY,(r, f )  

j, (- i 

and 

(2.30) 

(2.31) 

!n ode: f ~ :  the i-teg:a!s (2.30) ax4 (2.3:) :e be praper inner prodxts ,  the derivztives 
must all belong to the same operating space, in this case P (see definition (2.23)). 
Thus, Y .  SF/SM = Oon an'. Substitution of equations (2.30) and (2.31) into the Poisson 
bracket of equation (2.13) yields the spatial bracket for two arbitrary functionals 

convenience, an additional coordinate, t, which has the same properties as x): 
F [ p k  11, W x ,  1) .  s(x, f ) ,  C(x, 111 and GMz, f ) ,  Wt, t ) .  s(s t ) ,  C(x, 1)1 (using, for 

SG -~ ' SF 8G 

X { P ( X ,  f), MP(L, f ) l ~ d ~ ~  d3x 

SG 

X{S(S f ) ,  MO(& ~ ) I L ~ ' z  dpX 
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where 1. , .)L indicates the material bracket of equation (2.13). This expression was 
obtained through a lengthy (but straightforward) calculation, using the antisymmetry 
identities of the form 

B J Edwards and A N Beris 

{a, a L = O  (2.33a) 

and 

(2.33b) I n  hl L r h  n l  - 0  
1". U I L  ' 10, =JL-" 

where a and b represent the Eulerian dynamical variables. (Note that it is allowable 
to interchange the coordinates x and z under the integration.) 

The five brackets (. , .)L in equation (2.12) now need to be evaluated. From equations 
(2.25)-(2.28), we note that the necessary functional derivatives are 

(2.34) 

(2.35) 

(2.36) 

J s ' [ Y ( r ,  t j - x ]  
= / n p o ( r )  J Y , ( r , f )  6 ,pS3[Y(r ,  t ) - z ] d 3 r  

J s 3 [ Z  -x ]  
= P ( 5  f )  

J %  

(2.38) 

(2.39) 

(2.40) 
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x S’[ Y - L ]  d3Y 

x S3[ Y - 2 1  d3Y 

X S3[ Y -21 d’Y 

where the second identity of (2.10) was used. 

rewrite now as 
The brackets (2.38)-(2.41) can be substituted back into equation (2.32), which we 

{F, G},={F,  G]i+(F ,  G);+{F,  G } E + ( F ,  G}; (2.42) 

where the sub-brackets {F, G}: have the obvious interpretation from equation (2.32). 
Let us look at each sub-bracket in turn. The first sub-bracket, {F,G)L,  can be 
written as 

Integrating this expression by parts with respect to L yields two terms: 

SG -- SG 

x vpS’[r -XI d2z d’x 

(2.43) 

(2.44) 
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but we know that U .  S F / 6 M = 0  on an', so that the surface term vanishes (besides, 
the variations are required to vanish on the boundary). Therefore, only the bulk term 
survives, which after integrating over z becomes 

{F,G)P,=- ~- 
!m (8p:zf) J:, 

(p(x' I )  SM,(x, SF 1 )  )) d'x. 
SG J 

Sp(x, f )  Jx, 

In an analogous fashion, we can also write 

( F , G ) ; = - I  (-- 6 F  J 

$1, SS(x, 1 )  J x p  

(2.45) 

SF )) d'x 
SG J 

Ss(x, 1 )  ax, (s(x3 ') SM,(x, t )  

S F  J 

{F'G}F=-jm(SM,,(x,f)  

SF )) d'x 
SG J 

- SM,(x, f )  -(M'(X'f)6M,(x, Jxp t )  

and 

{ F , C } g = - [  (--( SF J "")---(CYP"))d3x SG J 
n. SC,, Jx, cnpSM, SC,, Jx,  SM, 

- j n , C y m ( s " ( x ) - ' - " ( " ) )  dIx 
SC,, Jx, SM, SC,, ax, SM, 

S F  J 
(2.48) 

By summing the four sub-brackets via equation (2.42), we thus arrive at the spatial 
counterpart of the Poisson bracket in the material description: 

{ F , G } . = - l  ("V,(-p)--V,(-p))d'x SG SG S F  
n' Sp SM, Sp SM, -I,), (" SM, V, (" SM, M , )  -"" SM, V, (* SM, M y ) )  d'x 

(2.46) 

(2.47) 

(2.49) 
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where we have replaced J/Jx, with V,. This bracket is bilinear, antisymmetric and 
satisfies the Jacobi identity. When integrated by parts, the first three integrals take the 
form that was originally postulated for ideal fluid flow by Morrison and Greene (1980, 
p 793); however, these three integrals have appeared in a number of places (e.g. Holm 
and Kupershmidt 1983). The last three integrals represent the elastic contribution to 
the Poisson bracket, and appear in general form in Marsden et nl (1984, p 171). The 
incompressible version of this bracket was postulated by Grmela (1988, p 831, but is 
derived here ior the first time. 

Now that we have the proper form of the Poisson bracket in terms of spatial 
variables, we only need to specify the spatial counterpart of the Hamiltonian, equation 
(2.15). If we consider the arbitrary spatial observation point, x, with volume element 
d'x, which corresponds to the material coordinate Y, with volume element d' Y at time 
I, then we can transfer the Hamiltonian of equation (2.15) directly over to the spatial 
coordinate at this instant through a direct change of variables: 

In order to derive the Eulerian form of the equations of motion, we only need to 
consider an arbitrary functional, F, o f  the dynamical variables p, M, s, and C: 

F [ P ,  M, s, Cl = f ( p ,  M s, C) d'x. (2.51) 
n' 

Hence we can write the dynamical equation for this functional as 

S F J ~  +-- S F  JM, +--+-- S F J S  
Sp d l  SM.. J l  Ss J I  SC,, J I  

(2.52) 

Analogously to equation (2.17), we can also write the dynamical equation for F in 
terms of the bracket (2.49) as 

(2.53) 

The :"G :re:sioxs af the dyxaxica! eqaa!ion for F, eqaztlons (2.52) and (2.5?), can 
now be compared directly to obtain the equations of motion for the spatial variables: 

(2.55) 
J s  - = -V,( vps) ai 

J 0" 
p x =  -pv,V,v, -pV,re;-V,p+2V, (2.56) 

and 

G = - V  Y L  i s  1 C,)+C,,,".t;+C,",&, LI (2.57) 
J f  

where p is defined in terms of the internal energy density as 

(2.58) 
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(It is easy to show the relation between equations (2.20) and (2.58).) Gnnela (1989, 
p 4386) incorporates a dependence upon the velocity into his equivalent pressure 
definition for complex fluids, but this appears to us to be erroneous. It does not seem 
plausible that the velocity should appear in a local equilibrium relation, such as this 
one. The elasticity of the medium defines an extra stress in the momentum equation, 
expressed by the last term in equation (2.56). This is the usual extra stress from 
continuum mechanics. The structure evolution equation (2.57) is a materially objective 
time derivative-Oldroyd's B derivative (1950, p 538)-and is commonly called the 
upper-convected derivative. This derivative plays the major role in modern rheological 
theories. Since the instant t is completely arbitrary, equations (2.54)-(2.57) represent 
the equations of motion in the spatial description at all times. 

We can also obtain the energy equations for the compressible elastic medium quite 
easily. Since we know that 

B J Edwards and A N Beris 

Ju(p,s,C) Ju Jp J u  Js du Jc,, -_-  - +- -+- - 
J t  ap a t  JS a t  JC,, a t  

(2.59) 

we can substitute into this expression equation (2.54). (2.55) and (2.57) to obtain, after 
some rearranging, 

which is the equation for the internal energy. Likewise, we find the kinetic energy 
equation by dotting U with equation (2.56): 

( (2.61) p- = - p u , ~ ,  ($U*) + u,V,,p - pu,V,e;+ 2u,V, C, - J(fu') 
J t  

and, finally, the energy equation may be obtained by the addition of equations (2.60) 
and (2.61): 

where e = e,+ U. 

Grmela (1989, p 4379) used a projection mapping to obtain the bracket representa- 
tion of the energy equations. Although this procedure nicely illustrates the consistency 
of the bracket scheme, the added complexity detracts from the beauty of the theory. 
The entire system of dynamical equations can be unequivocally described through the 
bracket expression of equation (2.49). 

3. The hydrodynamics of dissipative media 

As alluded to in the introduction, the Poisson bracket can only describe conservative 
effects; however, most systems contain dissipative mechanisms due to irreversible 
processes, in particular, the case at hand of viscoelastic media. These dissipative 
phenomena arise due to the interactions of many degrees of freedom. Indeed, in the 
simplest possible case, that of a system of coupled, harmonic oscillators, it has been 
shown that (focusing on one individual oscillator interacting with the rest) it is possible 
to obtain a dynamic behaviour corresponding to a dissipative Brownian particle (Ford 
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et a1 1965) or to a damped harmonic oscillator (Yurke 1984, Harris 1990 and references 
therein). However, the requirement for dissipative behaviour to be observed (in the 
sense that the oscillator ‘forgets’ its initial conditions) is that a continuous frequency 
spectrum of modes exist in the system, implying an infinite number of degrees of 
freedom (Dinariev and Mosolov 1988). We have opted instead to incorporate dissipative 
properties directly into the generalized bracket by introducing the dissipation bracket. 

The properties of a dissipation bracket, denoted [F,  GI for two arbitrary functionals, 
are oniy recentiy becoming ciear. A iorm discussed by Kaufman (1484) and Grmeia 
(1985) suggests that it should be bilinear, symmetric, act as a derivative and be a 
non-negative quantity. Beris and Edwards (1990a) proposed a similar form for incom- 
pressible viscoelastic fluids; however, in Edwards and Beris (1990) a new phenomeno- 
logical dissipation bracket was proposed which expressed the equations of motion in 
Hamiltonian form for both single-component and multicomponent fluid systems. Also, 
Grmeia (i989j proposed a noniinear dissipative form. 

The form of the dissipation bracket clearly depends upon the Hamiltonian (energy) 
assumed for the system as  well as the dynamical variables of the problem formulation. 
If the Hamiltonian represents only the conservative part of the system energy (i.e. the 
kinetic and potential energies), as was the case in Grmela (1988) and Bens and Edwards 
(1990a, b) for incompressible systems, then the dissipation must clearly be a non- 
positive form, and also symmetric. If we define a generalized bracket according to the 
dynamical relation 

d F  - = { ( E  H ) } z { F ,  H}+[F, HI 
d t  

in the spatial description (dropping the subscript E on the Poisson bracket), then 
[ek+ ep, H I  s 0, since d H / d r  s 0. 

In the present work, the Hamiltonian represents the total energy of the system and, 
as such, it has to remain constant in time according to the first law of thermodynamics. 
Consequently, d H / d t  = 0, and therefore [H, HI =O.  This requirement on the dissipa- 
tion bracket guarantees that the energy will be conserved in the solution of the resulting 
equations. Of course, any associated entropy production must be positive, which 
requires that dS/dt = [ S ,  H j  P 0, where S = jsd V I s  the entropy functional. For this 
system, we also require that the total mass is conserved: d W/dt = { W, H } + [  W, HI = 0, 
where W = j p  d V  It is also obvious from section 2 that the dissipation bracket must 
be linear in F, but it may in general be nonlinear in H (or G). 

Using the above properties, we may write the most general possible expression for 
the dissipation bracket as 

where the L[ . ] denotes that E is linear with respect to ., w = (a ,  b, c, . . . , M, s) and 
w = ( a ,  b, c , .  , . , M);  i.e. o = w - s ,  s being the entropy density. Thus equation (3.2) is 
the most general expression where we have pulled out the linear dependence on SFISs 
and written it separately. (Note that the minus sign in front of 3 appears merely for 
later convenience.) The quantities S H / S w  and V(SH/Sw) represent the system affinities 
or thermodynamic forces; the former being associated with relaxational phenomena 
and the latter with the fluxes of the primary variables, e.g. Vu, the velocity gradient 
tensor field. 
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Now if we use the properties described above, we can learn a little more ahout 
this expression. For instance, using the property that [S, HI 0 (which indicates why 
we broke the expression up the way we did), we immediately see that Y must be a 
convex, non-negative function. Furthermore, via the conservation of energy, [ H ,  HI = 0, 
we see that 

(3.3) 

'4J is a convex function, with an absolute minimum equal to zero at equilibrium where 
S H / S w = O  and V ( S H / S w )  =0,  i.e. 

with 

(3.5) 

and non-negative definite second derivatives. Using the thermodynamic definition of 
the absolute temperature, T -  S H / S s ,  as well as equation (3 .3) ,  we can rewrite the 
dissipation bracket of equation (3.2) in terms of arbitrary G as well, as 

In this article, we restrict ourselves to systems which are close to equilibrium, i.e. 
when E is linear with respect to G (or H )  as well as F. Hence we can express Z in 
terms of the functional derivatives as 

where A, B, C, and D are phenomenological coefficient matrices which, in general, 
may depend on S G / S s  and the primary variables of the system. One can determine 
constraints upon the phenomenological coefficients by considering the conservation 
of mass (d W/dt = 0) and material objectivity, as well as the microscopic time reversibil- 
ity of the medium. In case of the latter, due to the symmetry of the bracket, one can 
arrive at the Onsager-Casimir reciprocal relations which equate the phenomenological 
coefficients of opposing fluxes, i.e. A, = Aij. More specifically, due to the Onsager- 
Casimir arguments under the microscopic time reversal, it is assumed that (Woods 
1975, p 159) 

+'((.)= qjq+ ' ' ( -T )  (3.8) 

where T~ and qh are the parities of each affinity V ( S H / S a )  and V ( S H / S b )  under the 
time reversal, indicated by r. This also leads to the requirement that 
Furthermore, the types of coupling are restricted by the Curie principle, i.e. that only 
affinities of the same tensorial character can couple with each other. 

In the following subsections, we illustrate the use of this dissipation bracket (see 
equation (3.2)) in constructing thermodynamically consistent equations of motion for 
viscoelastic fluids. Although the conservative dynamical equations are quite standard, 
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the dissipative fluid equations represent a new form for the Eulerian viscoelastic fluid 
equations. Throughout we assume that the Curie principle is valid. For the special 
cases of the single-component and multicomponent simple fluids, the reader is referred 
to Edwards and Beris (1990). 

As described in section 2, the dynamical variables in elastic fluid dynamics are 
p, s, M, and C (with corresponding dissipative affinities V [ S H / S p ] ,  V[SH/SsI, 
V[SH/SM], SHISC,  and V [ S H / S C ] ) .  Thus the dissipation bracket for this case, 
involving all possible couplings not forbidden by the Curie principle, is 

(3.9) 

where we have used the reciprocal relations (3 .8 )  and Q, P and R satisfy additional 
objectivity relationships of the form Qvprr = QTFap = Q,,?., = q " O Z 7 .  In order for mass 
to be preserved, it is necessary that A = D  =O;  however, this is not the case for the 
multicomponent simple fluid. (See Edwards and Beris (1990) for details.) The first 
integral represents the effects of viscosity upon the equations of motion, and the third 
represents the effects of heat conduction. Assuming that the fluid is isotropic, one can 
set Be, = kS,, and QmPYF = pS,,S,, + pS,,S,, + K ' S ~ & ~ ,  where k is a thermal conduc- 
tivity, p is a shear viscosity and K '  is a function of the bulk viscosity, K ,  and the shear 
viscosity: K'= K - 2 p / 3 .  

In the above expression, the fifth integral represents the effects of the translational 
diffusivity of the polymer molecules, i.e. the spatial variations due to an inhomogeneous 
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concentration. An expression for the phenomenological tensor U is given by Edwards 
ei a1 (1990) for the special case of rigid rods. The sixth integral represents the effects 
of relaxational phenomena, where A can be interpreted as an inverse relaxation time. 
(See Beris and Edwards (1990a, pp67,68) for details.) The seventh integral term 
represents the effects of non-affine motion in the system. The minus sign in the integrand 
of this term arises according to equation (3.8) since the affinities involved have opposite 
parities. Note that this term does not contribute to the entropy production. 

Substitution of these expressions into the dissipation bracket (3.9) yields the 
following dissipative evolution in terms of the dynamical variables: 

-= J P  - V , ( v , p )  (3.10a) 
J f  

Js 1 1 

Jt T T 
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- - _  - V 7 ( u y s ) + -  V , ( k T V , T )  +- [ p ( V , u ,  + v , u , )  + ~ ' S , , v , u , ] v , U ,  

(3.10b) 

( 3 . 1 0 ~ )  

(3.10d) 

Of course, the no-penetration boundary condition must be replaced with the no-slip 
condition. As in section 2, the energy equation can then be obtained as 

(3 .11)  

This completes the development of the dissipative hydrodynamic equations for vis- 
coelastic media. 

Yet, we may obtain one more piece of information from the dissipation bracket, 
i.e. we may use it to obtain the entropy inequality for the system. Since we know that 
dS/dt  > 0, via the bracket of equation (3.9), we arrive at the following inequality which 
must be satisfied for the viscoelastic system: 

Q.pyrVebpV+ + B,pVmTVoT 

(3.12) 
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Many well known viscoelastic models can now be expressed in the Hamiltonian 
formalism, and thus extended consistently to compressible situations. (For incompress- 
ible fluids, this was recently attempted by Beris and Edwards (1990b)J The pbenomeno- 
logical tensors in the above expressions have been deliberately left unspecified to make 
the transport equations as general as  possible. It is in these parameters that the various 
viscoelastic fluid models must differ from each other, since every model must have the 
above underlying structure in order to be thermodynamically consistent. Aside from 
the symmetry constraints upon ihese phenomenoiogicai tensors as indicated above, 
one is also limited by the mathematical constraints imposed upon the second-order 
tensor C, for instance, the Cayley-Hamilton theorem. 

In  particular, let us discuss briefly two of the simplest viscoelastic models, which 
concern a spring and a dashpot: the spring and dashpot in parallel (Voigt model) and 
the spring and dashpot in series (Maxwell model). (A combination of these two models 
gives iiie Gidroyd-E h i d .  j Aiihough originaiiy derived for an incompressibie fluid, 
these two models may easily be extended to compressible situations via the above 
development. (For the incompressible Hamiltonian formulation of these models, see 
Beris and Edwards (1990a, section IV).) Here, we let C be a general, structural-density 
tensor with units of mass/length. The Voigt model may then be obtained in the above 
development by  setting B = P = A = R = 0. with the Hamiltonian provided by equation 
il c n ,  ... :tlr - L  I." ... L^-^ .I." "^I...L^lr.. c-.." ^"^-I.. A....":*.. :" A-&--> ^" 
,L.,", w1111 U -U I 1 2 ,  W l l C l L  L l l L  . I r l l l l l lY l l r  .1GL C " ' L 6 J  "L'.,",Ly 12 " C L L l l C "  ',a 

a = (uk,T/2) tr C'-(vpkBT/2) In[det(C'/p)]+~i(p, s) (3.13) 

where C '=  ( K / k , T ) C  is a dimensionless structural parameter replacing C in the bracket 
expressions (2.49) and (3.4), K is the Hookean spring constant, U is the number of 
springs per unit mass of material and ks is Boltzmann's constant. The first term on 
!he right-hand side ofeq.x!inn (3.!?) describes !he e!as!ic extensinn of the constitcent 
spring, the second term describes the Boltzmann entropy, and the last term describes 
the dependence of the free energy upon the mass density and entropy density. The 
Maxwell model can similarly be obtained with the same Hamiltonian but with dissipa- 
tive parameters Q = B = P = R = 0 and 

A,,,,=(l/ZuKA)(CI,S,,+Cb,S,,+Cb,S,,+C:,S,,) (3.14) 

where A is the system relaxation time. Other more complicated models can be expressed 
in Hamiltonian form in a similar manner, following Beris and Edwards (1990b). 
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